gracenote.

A NIELSEN COMPANY

Gracenote On Product Demo Kit

Version: 1.4.0
Published: 07 Apr 2025

DISCLAIMER:

THE PDK IS NOT MEANT TO BE USED AS A PRODUCTION-READY SYSTEM. IT IS
MERELY A DEMONSTRATION OF ONE APPROACH (AMONG MANY) TO
IMPLEMENT THE INGESTION BACKEND.

CLIENTS WILL NEED TO CREATE THEIR OWN CODE AND SYSTEM FOR LIVE
PRODUCTION OR OTHER USES.

Gracenote, Inc.
A Nielsen Company

http://www.gracenote.com

http://www.gracenote.com

Requirements
Platform

Databases

Applications

Python Dependencies
Installation

Windows
MacOS/Ubuntu/Linux
AP] Settings
Dependencies
Upgrades

Installation directory
DB schema changes

Usage

Using Seed Files
SFTP Hosts

Using Stats
Consuming Data
TablePlus

Sample Queries
SQlite CLI Client

Basics

Export

Import
Batch Mode

Structure
Configuration
API Credentials
FTP Credential fil
sQlite
Postgres
MysQL

Misc

Postgres-specific Config

Utilities
Limitations
Dependencies
Mac
Ubuntu
Windows/MSYS2
History

Overview

Gracenote On Product Demonstration Kit is a sample implementation of the ingestion backend
for Gracenote On data delivery API. The purpose of the kit is to speed up the evaluation of
Gracenote data delivered via the APl and the implementation of customer ingestion systems.
The kit currently demonstrates how to work with the API and provides sample parsers and
database schema.

DISCLAIMER: THE PDK IS NOT MEANT TO BE USED AS A PRODUCTION-READY
SYSTEM. IT IS MERELY A DEMONSTRATION OF ONE APPROACH (AMONG MANY) TO
IMPLEMENT THE INGESTION BACKEND. CLIENTS WILL NEED TO CREATE THEIR OWN
CODE AND SYSTEM FOR LIVE PRODUCTION OR OTHER USES.

When started, the kit downloads the API data until no more updates are available and then
processes the downloaded batch through the ETL steps:

Insert Stage Core

Download API XML to Parse XML, validate Load validated TSV Stage data for loading Update or Replace
disk, validate format rows, write to TSV data into staging DB | (de-dupe, cleanse etc) | Core data from Stage

Core
schema

The implementation is built using Python, shell scripts, widely available tools such as curl,
xmllint, sqlite; it runs natively on Linux and Mac, it also runs on Windows using MSYS2
environment (based on Cygwin).

XML TSV

Requirements

Platform

e Ubuntu/Linux
e MacOS
e Windows/MSYS2 or /WSL

Databases

e SQLite (recommended)
e Postgres
e MySQL

Applications

e curl, xmllint, sqlite3
e Python 3.x (latest recommended)

Python Dependencies

e Python 3.x
o SQLite: sqlite3 module - library version 3.14+
o Postgres: psycopg2 module (also needs Postgres client libraries)
o MySQL: mysqgl-connector-python module (also needs MySQL client libraries)

Installation

Windows

Download and install MSYS2 environment: https://www.msys2.org/
Update MSYS2 environment: https://www.msys2.org/docs/updating/
Install Python into MSYS2 environment $ pacman -S python
Install SQLite and libxml2 into MSYS2 environment
O $ pacman -S sqglite3
O $ pacman -S libxml2
e Download the PDK archive into your home directory within MSYS2 environment (e.g.
C:\msys64\home\username) and unzip it into a folder (e.g. PDK-v1.0)

MacOS/Ubuntu/Linux

e Download the PDK archive into your home directory and unzip it into a folder (e.g.
PDK-v1.0)

API Settings

Your Gracenote customer care representative will have provided you with the demonstration
API key to be used with the PDK. Create an empty configuration file (e.g. config/my.conf) and
set the APIKEY parameter to the value of the key. See Configuration section for details.

Dependencies

When run, the script will check whether required dependencies (system and Python modules)
are satisfied and will provide feedback if they are not. The environment recommended in the
requirements section (latest Python 3.x) should satisfy all Python dependencies for the default
configuration of the PDK.

https://www.msys2.org/
https://www.msys2.org/docs/updating/

Dependencies section contains approaches for resolving dependencies, however note that
each system is different and it's not possible to provide a universal recipe to resolve an
arbitrary dependency. If you're running into issues, please consider using the recommended
environment.

Upgrades

This section covers a scenario when you already have an existing PDK and are upgrading to a
newer version.

Installation directory

It is recommended to install different releases of the PDK in separate directories

DB schema changes

If the new release calls out DB schema change, then the new release cannot be used with the
DB schemas from the previous release. An exception to this is when you're using the default
DB engine - SQLite (which uses file-based databases) - AND when you're installing different
PDK releases in different directories. In all other cases, either drop the previous release
schemas (accumulated data will be lost) or change the schema prefix in the PDK configuration
file of the new release to make it distinct from the previous release (accumulated data will be
preserved).

Usage

Start the run script in the terminal with your configuration file as a parameter.
® ./run.sh -c my.conf

The run script will download the data from the API using stored update_ids (or zero if it's a first
start) until there are no more updates; will parse the downloaded data into a tabular format
(TSVs), insert the data into the staging schema and from there will update the data in the core
schema (see diagram in the Overview section).

The script can be run as often as needed to get the latest data, load it in staging and update
the core database. The initial update ("cold start") with the demonstration API key should take
less than an hour with a bulk of time (~75%) consumed by the download phase.

The script expects to be started from its directory so if you run it on cron, use something like cd
/home/user/pdk_v@ && ./run.sh -c my.conf

In the event of an error, the script has limited ability to store its state and then, on subsequent
run, proceed to the point of interruption and continue without impacting data integrity. This is

meant for user interruption (Ctrl-C) as well as simple errors such as running out of disk space
or not being able to connect to the database. In case of exceptions unhandled by the code, or
multiple consecutive interruptions by errors in different places it is recommended to clear the
state and reload the data from update_id zero (after addressing underlying issues). Refer to
the Ultilities section below for helper scripts to clear out the PDK state and data.

Using Seed Files

To use the seed files, set seed file FTP credentials and path in your configuration file. Do not
use trailing slash in FTP_PATH:

® FTP_HOST=ftp://on.tmstv.com

® FTP_USER=my_user

® FTP_PASS='my_pass'

® FTP_PATH=path/to/seed/files

Also, set the YYYYMMDD matching regex for the seed manifest file name. For example, regex
for cxlb_file_manifest_20200415.xml manifest file name would look like so:

® SEED_MANIFEST_REGEX='cxlb_file manifest_\([@-9]\{8\}\)\.xml'

Here, \([0-9]\{8\}\) is a pattern to match 8 sequential digits (YYYYMMDD) located between
cxlb_file_manifest_ and .xml (dot is escaped with backslash). The regex must be enclosed in
single quotes.

Start the run script overriding the default delivery mode (API) with -d option SEED:

® ./run.sh -c my.conf -d SEED

SFTP Hosts

For SFTP hosts, specify protocol accordingly: sftp://on.tmstv.com. Below are the
troubleshooting steps for common errors:

e curl: (1) protocol "sftp" not supported or disabled in libcurl
o Ensure you have the latest version of curl installed
e curl: (60) SSL peer certificate or SSH remote key was not OK
o Verify that you're able to connect to the SFTP host using sftp utility and your
SFTP username: sftp my _user@on.tmstv.com

Using Stats

Start the stats script in the terminal with your configuration file as a parameter.
® . /utils/run_stats.sh -c my.conf

The script will execute the db/.../stats.sql file against your configured database. On the first
run, this will create _stats table to collect the metrics, and will then run a couple of metrics on
key entities - specifically count of ingested objects per ingest job and count of updated objects
per time interval (15min). The SQL script is meant to be run periodically (e.g. on cron); default
stats queries are written to aggregate unprocessed data (via checking against maximum _stats
timestamp for a given metric), so that the repeat runs of the script on the same dataset would
not insert new stats. The data in _stats can then be viewed as timeseries using visualization
tools like Grafana.

The stats.sql script can be enhanced with additional metrics for _stats table; the run stats script
also supports optional command line options that enable customization of the stat scripts being
run: -s alt_sql_suffix, -0 schema_override, -p parameters

e Run a different stats SQL file using -s option: ./utils/run_stats.sh -s daily will run
stats_daily.sql

e Run stats against a different (vs configured) schema using -o option:
./utils/run_stats.sh -o on_customer_99999 full schedule_core

e Pass pipe-separated ordered parameters to the SQL file using -p option. Parameters
are referenced as {1},{2},... from SQL.: ./utils/run_stats.sh -p "6em|12h" - {1} will
evaluate to 60m, {2} to 12h

Consuming Data

Once the script ran successfully, it appears to have fetched some data and loaded it up
somewhere. That's great but how can we work with this data?

The default configuration uses file-based SQLite database engine and loads the data into .db
files in the root directory of the PDK. Two files are created - core and stage databases (names
below are examples, your schema names may differ). The data is accumulated in the core
database, while the stage database serves as a temporary place to store and stage the
incoming data before loading it into the core database.

Unset

§ 1s -1 *.db
on_sample_core.db
on_sample_stage.db

The following tools can be used for viewing and interacting with the database:

TablePlus

If you're on Mac or Windows, you can use TablePlus, which is a free and easy-to-use database
client, allowing you to view database structure and data, run queries and export query results.
TablePlus supports multiple database engines and will provide the same familiar interface if the
PDK is configured to use another database engine. TablePlus is a great way to work with data
in interactive mode.

a | & soLite 3.27.2 : gn-pdk/db/on_3888_core.db : on_3889_care.db : source c Q (= O = 1

® =) = prgsveld updateld updateDate deleted inactive name calisign num maj a

a American Broadcasting Company [asc | nuii| | —

m Queries History 10084 9429439204 2020-01-27 11:47:35 CBC CBC 10003 v
program_sportsinfoteams 10098 8049315878 2019-10-23 13:41:06 CBS Corpaoration CcBS updateld integer
el 10166 8049325736 2019-10-23 13:41:36 cTv cTv 8049305104 v

. f 12-01 21:55: o co. 7
program_videadescriptors 0212 8637387535 2019-12-01 21:55:35 FOX Broadcasting Co. FOX EEEEEED et
schedule 10991 8052082230 2019-10-23 18:50:06 National Broadcasting Company ~ NBC 2019-10-23 13:40:36 v
cchedule_avent 16367 9329158182 2020-01-21 14:01:35 Télé-Métropole (TVA) TVA delatad integer
schedule_event_broadcastid 18371 8049278703 2019-10-23 13:39:36 Société Radio-Canada SRC v
season 19548 8049354310 2019-10-23 13:43:06 HBO HD HBCHD inactive integer

I 21868 8547026177 2019-11-25 13:40:35 Showtime HD SHOWHD v
season_asset_identifiers
32470 9415525706 2020-01-25 00:11:35 WTENDT (WTEN-DT) WTENDT 24 name wvarchar
season_assets) doasting G
e T American Broadcasting Company
season_cast 32645 8390840836 2019-11-15 21:28:07 ESPNHD ESPNHD :
24941 8547026276 2019-11-25 13:40:35 Starz HD STZHD callSign varchar
season_crew aBC .
- 34968 7979700428 2019-10-17 17:26:38 WRGBDT (WRGB-DT) WRGBDT 6
season_descriptions
. g num integer
season_keywords 36085 9530331483 2020-02-03 14:37:11 WNYTDT (WNYT-DT) WNYTDT 12 .
" 42642 8050425134 2019-10-23 15:33:06 Turner Network TV HD TNTHD
season_relations " .
. 44135 8530331482 2020-02-03 14:37:11 WNYTDT2 (WNYT-DT2) WNYTDT2 12 Lol L
season_titles. -
source 45777 9456644879 2020-01-28 17:52i41 WXXADT {WXXA-DT) WXXADT 9
minorNum integer
source.affils 45867 8158176904 2019-10-3115:39:05 CBFTDT (CBFT-DT) CBFTDT 19 .
F1R0 GARRAGAARD 2018 1A 23 104796 B.E Mmswsinrls IR Ennr AcTuLn
source_assets iy rchar
source_attribs N s+ Row 1 of 32 rows selected Columns _Filters * New York ~
source_bcastlangs . 2020-02-08 11:07:04.6830 state rehar
source_countriesofcovarage SELECT “rowid" as rowid,* FROM “source" ORDER BY 1 LIMIT 30@ OFFSET @; NY v
source_edlangs == 2020-02-08 11:07:04.6880 postalCode rche
SELECT COUNT(x) as count FROM “source'";
source_marketids) o5 Y 10023 ~
source_relationships <Sountry. rehar
T~ mW USA M
tyoe)

Sample Queries

The following sample SQL queries are provided in the docs/sample_queries/ directory:

source_info.sql - extract basic TV channel information with some metrics
channel_schedule.sql - extract the schedule of a channel along with basic program
information in a table with each airing being one row

e program_details.sql - extract one or more program records with more detailed
information, without images and video descriptors
program_videodescriptors.sql - VideoDescriptor retrieval for a TMSId
videodescriptor_taxonomy.sql - VideoDescriptor full taxonomy in matrix/pivot
representation

https://www.google.com/search?q=tableplus

SQLite CLI Client

If you don't mind the command line and/or need to work with data in automated fashion,
SQLite command line client is a versatile tool that can run SQL queries, import tabular data
into tables and export it from either tables or query results, in interactive or batch mode.

Basics

Unset

S sqlite3 on_sample_core.db

SQLite version 3.24.0 2018-06-04 14:10:15

Enter ".help" for usage hints.

sglite>

sqlite> -- view db schema

sglite> .schema

CREATE TABLE IF NOT EXISTS "source" (...

sgqlite>

sglite> -- open another db; will close the current db; empty db will be

created if file doesn't exist
sglite> .open some_other_database.db

sqlite>

sglite> -- open multiple dbs

sqlite> ATTACH 'pathl1/database_1.db' as db1 -- to query, use prefix:
db1.table_name

sqlite> ATTACH 'path2/database_2.db' as db2 -- to query, use prefix:
db2.table_name

sgqlite>

sglite> -- show table header in queries

sglite> .headers on

sglite>

sglite> -- run SQL query

sqlite> SELECT * FROM source LIMIT 10;
prgSvclId|updateld|updateDate|deleted|inactive|name|callSign]|...
10003 8049305104 |2019-10-23 13:40:36| | | American Broadcasting
Company|ABC]| ...

sgqlite>

sglite> -- exit client

sglite> .exit

Export

Unset

sqlite>
sgqlite>
sqlite>
sglite>
sgqlite>
sglite>
sgqlite>
sglite>
sqlite>
sglite>
sgqlite>

Import

Unset

sqlite>
sglite>
sgqlite>
sglite>
sqlite>
sglite>
sqlite>
sglite>

-- specify output format (tab=TSV, csv=CSV)
.mode tab

-- specify output file
.output my_export.tsv

-- run query; results will be written into the file
SELECT * FROM source;

-- redirect the output back to console
.output stdout

-- create a table to import the file to (assume 2 columns)
CREATE TABLE import_table(columni text, column2 int);

-- specify file format (tab=TSV, csv=CSV)
.mode tab

-- import the file
.import import_file.tsv import_table

Batch Mode

Script to output table row count

Unset

-- output_count.sql script --

.print SQLite: running table counts...
.mode tab
.output table_counts.tsv

SELECT 'source', COUNT(*) FROM source;
SELECT 'schedule', COUNT(*) FROM schedule;
SELECT 'celebrity', COUNT(*) FROM celebrity;
SELECT 'program', COUNT(*) FROM program;
SELECT 'season', COUNT(*) FROM season;

Running the script

Unset

S sqlite3 on_sample_core.db < output_count.sql
SQLite: running table counts...

S

S cat table_counts.tsv

source 32

schedule 480

celebrity 1113904

program 35482

season 6139

S
Structure
e bin - shell and Python scripts including parsers
e config - configuration files for PDK and databases
e db- SQL scripts
e files - temporary XML and TSV files
® logs - runlogs
e utils - utility scripts
e vars - variables containing current PDK state

Configuration

Default configuration parameters are contained in the config/default.conf file. Rather than
editing this file directly, it is recommended to create a custom configuration file (e.g.
config/my.conf); any parameters there will override default parameters when run.sh script is
given the custom config file with -¢ option. This makes it easier to transfer your configuration to
another version of PDK in the future. The custom config files must be located in the config
directory, and given to run.sh script without path (e.g. ./run.sh -c my.conf).

Configuration files can be edited by nano editor available on most Linux/Mac environments

® $ nano config/my.conf

e Use Ctrl-O to save the edited file and Ctrl-X to exit the editor
The following provides a brief description of important configuration settings

e DATABASE - database engine used by PDK - SQLITE or PGSQL or MYSQL or
MONGO. Default: SQLITE

e SCHEMA_PREFIX - partial schema name to which _stage and _core suffixes are
appended to to form full schema names (or .db file names in case of SQLite). Default:
on_sample

e DB _DELETES - whether to delete objects flagged for deletion by the API from the
database. Default: TRUE

API Credentials

e BASE_URL
e APIKEY
e STREAM_ID - optional, use only if streamld was provided

FTP Credentials (seed files)

FTP_HOST

FTP_USER

FTP_PASS - supply password in single quotes

FTP_PATH - no trailing slash

SEED_MANIFEST_REGEX - YYYYMMDD matching regex for the seed manifest file
name

SQLite

e SQLITE_DIR - location of SQLite .db files. Default: . (PDK root dir)

Postgres

PGSQL_HOST

PGSQL_PORT

PGSQL_USER - the user must have schema creation privileges

PGSQL_PASS - supply password in single quotes. If using default user (postgres), be
sure a password exists for that user. Please refer to Postgres documentation for further
info.

PGSQL_DBNAME - db_name must be existing database - the script is not able to
create one

MySQL

Misc

MYSQL_HOST

MYSQL_PORT

MYSQL_USER - the user must have schema creation privileges
MYSQL_PASS - supply password in single quotes

WITH_XML_AFTER _PARSE - what to do with XML file upon successful parse -
DELETE or LOG. Default: DELETE

WITH_TSV_AFTER_IMPORT - what to do with TSV file upon successful import into
staging schema - DELETE or LOG. Default: DELETE

NULL_VALUE - value designating NULL in TSV files. Default: __null__
APPEND_TSV - setting this to TRUE can work in conjunction with DATABASE=NONE
to accumulate all updates in TSV files without loading them into a database. Default:
FALSE

LOG_INVALID_SOURCE - keep source XML for rows that fail validation. Default:
FALSE

RDB_DATA LOAD - only load subset of data (FULL|SHELL |arbitrary label) into
Relational DB, to conserve space/speed up DB ops. FULL option loads everything.
SHELL option will load only the following for each entity (parent table): primary key,
updateld/Date, deleted/inactive flags, MD5 and PDK ingestld fields. Specifying arbitrary
label will result in loading of SHELL option data plus any fields specifying said label in
config/fields.tsv, column #10. Multiple comma-separated labels can be specified per
field (no spaces, case-sensitive, do not use label SHELL or FULL). Default: FULL

Postgres-specific Config

PG_CORE_UPDATE_THREADS - use multiple threads to run core updates on the
database. Default: disabled (single thread).

PG_KEEP_IDX_ON_UPDATE - keep non-key indexes and constraints during core
update. When FALSE, non-key indexes and constraints in the core schema will be
dropped and recreated after the update completes. Will have no effect on user-created
indexes in core schema. Can be useful for running large updates, e.g. after ingestion
pause. Default: TRUE

Utilities

$./utils/show_vars.sh to show variables such as latest update _ids, last run status etc
$./utils/rm_all.sh -c my.conf to clear out all variables, any xml/tsv files and specified
schemas from the database in the given configuration file

$./utils/rm_schema.pgsql.sh -c my.conf to drop specified schemas from PgSQL
database in the given configuration file

$./utils/rm_schema.mysql.sh -c my.conf to drop specified schemas from MySQL
database in the given configuration file

$./utils/rm_schema.sqglite.sh -c my.conf to drop specified SQLite databases in the
given configuration file

$./utils/rm_vars.sh to clear out all variables and reset update_ids to zero. This does
not delete the data in the database.

$./utils/rm_xml.sh to clear out xml files. Normally there shouldn't be any unless the job
was interrupted, in which case you may want to keep them.

$./utils/rm_tsv.sh to clear out tsv files. Normally there shouldn't be any unless the job
was interrupted, in which case you may want to keep them.

Limitations

PDK path must not contain whitespaces

While user interrupts (Ctrl-C) are supported, terminating the PDK process via other
means could leave it in an inconsistent state. To recover, it is recommended to clear the
state and reload the data from update_id zero

Deleted shell objects (i.e. those consisting solely of object id, update id/date, deleted
flag) arriving from certain API endpoints (e.g. On API Celebrities) are ingested into Core
as is (in DB_DELETES=FALSE mode).

Dependencies

This section contains some approaches for resolving dependencies, however note that each
system is different and it's not possible to provide a universal recipe to resolve an arbitrary
dependency. If you're running into issues, please consider using the recommended
environment.

Mac

e Python 3.x
o Postgres
B pip3 install psycopg2
o MySQL
B pip3 install mysql-connector-python

Ubuntu

xmllint
O sudo apt-get install libxml2-utils

e curl

O sudo apt-get install curl
e SAQlLite libs

O sudo apt-get install sqlite3 libsqlite3-dev
e Postgres libs

O sudo apt-get install postgresql-client libpg-dev
e MySAQL libs

O sudo apt-get install python3-mysql.connector
e Python 3.x
o Postgres

B pip3 install psycopg2
o MySQL

B pip3 install mysqgl-connector-python

Windows/MSYS2

e SAQLite

O pacman -S sqlite3
e Python 3.x

O pacman -S python

History

e v14.0

o

OnSports support with SportsEvents / Sports endpoints -> DB schema change

e v1.3.20

o

o

Update schema for OnSports compatibility -> DB schema change

Update schema to capture product changes (schedule eventld, source altname)
-> DB schema change

Modified/improved support for Main-Dependent entity
decomposition/reconstruction

e v1.3.19

o

@)
@)
@)

Add sample queries

Stats - streamdetails with Pg/My/Lt output, release streamdetails gen to utils
Add run_stats reentry check

HASH_ORIG_DATA option (default=TRUE) to include full data (sans
updateld/Date) into MD5 calculation, regardless of RDB_DATA_LOAD setting

e v1.3.18.1

o

O

Update schema to capture product changes (program_epinfo:subType,
celebrity _participanttype:isPrimary) -> DB schema change

Include program_title:subType (type=full) as program:title_subType -> DB
schema change

e v1.3.18

o

Update schema to capture product changes (program rel label,
source_transportid, sport eventld) -> DB schema change

Update SourcePrograms schema -> DB schema change

Add ProgramAnnotations endpoint -> DB schema change

Workaround for missing VideoDescriptorTaxonomyltem identifier (use themeld
for descriptortaxonomy)

o v1.3.17

O

Update schema to capture product changes (SourcePrograms, restricted asset
flag) -> DB schema change

Stats: add parameter support / more flexibility to the run script + add dimension
field to stats table

Multithreaded PgSQL core update edge case handling - check pid count before
waiting for pids

e v1.3.16

o

Update schema to capture product changes (origAudioLangs, sourceGroups,
exactStart/EndDateTime) -> DB schema change

Experimental support for multithreaded PgSQL core update

Interrupted core update sequence now resumable from a stored batch number
(vs from start)

o Support for UPDATE_FLAGS feature (workaround for deleted/inactive "shell" API
updates)
o Fix for "composite" timestamp in seed file download
o Include dl_perf.sh and status.sh utils in product PDK releases
o Docs: deprecate SchemaSpy due to lack of support for current GraphViz version
v1.3.15
o Support for Postgres Staging and Core Update by entity / parallelized
o Add (MySQL,SQLite) or refactor (PgSQL) support for implicit inactives
o Reorg/rename Postgres DB replace core files; reorg/rename SQLite/MySQL DB
files to match Postgres convention
o Fix missing delete flag in shell/skeleton ingest mode
o Fix extraction of deleted/inactive flags in Source parser
o Fix to properly create and drop stage indexes in Pg
v1.3.14.2
o Documentation update
v1.3.14.1
o Temp fix to prevent deletion of inactive dependent entities
o Fix issue with missing updates due to discrepancy in max batch ord and row
count
v1.3.14
o Added missing fields (celebrity:nationality,ethnicity,baseline asset rank;
season_asset:seasonld; source:reach) -> DB schema change
o Modified VideoDescriptors schema/parser to match delivery packaging (in
taxonomyltems) -> DB schema change
o Added RDB_DATA LOAD=ENTITY_PKIDX shell ingest mode: loads entity PKs,
update info, indexed fields which includes all FKs
Shell ingests (RDB_DATA_LOAD=ENTITY_PK_ONLY) now load "inactive" field
Added API_CALLS_MAX option to limit # of calls in endpoint download (smaller
updates for MySQL)
v1.3.13
o Added schedule_event:exactSource -> DB schema change
v1.3.12
o Bug fixes, documentation updates
v1.3.11
o Schema modifications to reflect product updates (transport ids, ratings) -> DB
schema change
o Fixed issue with indexes not being dropped in Postgres core replace
o Separated insert flow from staging flow; updated flow diagram
o Added DB schema version check
v1.3.10
o Schema modifications to reflect product changes -> DB schema change
o Various parser fixes
v1.3.5

o O O O

O

Schema modifications to reflect product changes -> DB schema change
Support On API CV endpoint

Support database deletes

MongoDB support (beta)

Various parser/logic fixes

e v1.213

O

o

Support all On API endpoints incl. Enhanced Celebrity -> DB schema change
Expand array of abnormal conditions after which PDK can be restarted and still
preserve data integrity (now includes errors/user interrupts/process terminations)
MySQL support

Various parser/logic fixes

Custom config files to override defaults -> config file change
OVD, VOD, VideoDescriptor endpoints -> DB schema change
Support for seed files provided via FTP

Initial GA release

	Gracenote On Product Demo Kit
	
	Overview
	Requirements
	Platform
	Databases
	Applications
	Python Dependencies

	Installation
	Windows
	MacOS/Ubuntu/Linux
	API Settings
	Dependencies
	Upgrades
	Installation directory
	DB schema changes

	Usage
	Using Seed Files
	SFTP Hosts

	
	Using Stats

	Consuming Data
	TablePlus
	Sample Queries

	
	SQLite CLI Client
	Basics
	Export
	Import
	
	Batch Mode

	Structure
	Configuration
	API Credentials
	FTP Credentials (seed files)
	SQLite
	Postgres
	MySQL
	Misc
	Postgres-specific Config

	Utilities
	Limitations
	
	Dependencies
	Mac
	Ubuntu
	Windows/MSYS2

	
	History

